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Homogeneous cooling state for a granular mixture
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The homogeneous cooling state for a binary mixture of inelastic hard spheres is studied using the Enskog
kinetic theory. In the same way as for the one-component fluid, we propose a scaling solution in which the time
dependence of the distribution functions occurs entirely through the temperature of the mixture. A surprising
result is that thépartial) temperatures of each species are different, although their cooling rates are the same.
Approximate forms for the distribution functions are constructed to leading order in a Sonine polynomial
expansion showing a small deviation from Maxwellian, similar to that for the one-component case. The
temperatures and overall cooling rate are calculated in terms of the restitution coefficients, the reduced density,
and the ratios of mass, concentration, and siZ8$063-651X99)00211-]

PACS numbgs): 81.05.Rm, 05.20.Dd, 51.18y, 47.20—k

[. INTRODUCTION these distributions yield twadlifferent partial temperatures
with the same cooling rates. This surprising result is consis-
Many features of granular media, particularly those assotent with recent studies of tracer dynamijég and Brownian

ciated with dissipation, can be represented by a fluid of hardnotion[6] with inelastic collisions, where the temperature of
spheres with inelastic collisions. The analysis of one-the tagged particle distribution was found to be different
component systems via kinetic theory for such a fluid hagrom the surrounding bath. This effect is generic for multi-
been an active field of research in recent years. One impoeomponent systems and is illustrated in detail here. Some
tant objective has been the derivation of fluid dynamic equaimportant consequences for hydrodynamics are discussed in
tions and corresponding expressions for the transport coeffthe final section. The analysis is based on the Enskog kinetic
cients. For a given kinetic equatiofe.g., the Boltzmann equation, which for homogeneous states is the same as the
equation at low density or the revised Enskog equation afyore accurate revised Enskog equalitth The coupled set
finite densitieg 1]) a “normal” solution is obtained approxi- f kinetic equations is recalled in Sec. II, the homogeneous
mately using the Chapman-Enskog method adapted 10 thg,g|ing solutions are defined, and the condition of equal

case tOf melar?uc CO||ISIOH§2(,j3]t: Byd“norn‘(njal” solution is irgpoling rates is deduced. An approximate solution is ob-

tmh(rac?l:] k? rt]r?ewh Ojr%;pﬁ;?nin fiellg]se Fi?eglag{;gecgﬁé?éi:Tr:;?AYned in Sec. lll by expanding the distribution functions in a
gh t ydrody - complete set of polynomials. Since quite accurate results are

solution is obtained as an expansion about the local Max-

wellian, while for inelastic collisions the reference state is aobtalned in the one component case by truncation at first

local “cooling” solution with an inherent time dependence order, a similar approximation is considered here. The global

of the temperature due to the loss of energy in the collisions€mPeraturelwhich is the relevant one at a hydrodynamic
vel) and those for the two species are determined as a func-

For spatially homogeneous states the latter is referred to a{g e >t ' L
the homogeneous cooling statéC). It qualifies as a nor- tion Qf the restlt_utlon coefficients, mass ratio, composmop,
mal solution since all time dependence appears only througHensity, and ratio of hard-sphere diameters. The description
the temperature. The distribution function is no longer Max-applies for an arbitrary degree of inelasticity and it is not
wellian but its form in the one-component case has beefiestricted to specific values of particle masses, molar frac-
determined to a very good approximatipt]. The objective  tions, and/or particle sizes. The results are discussed in Sec.
here is to extend this analysis of the HCS to the case of & and the relationship to previous work on mixturgs-9]
binary mixture. Such an analysis is the essential first stefs also given there.
needed for the derivation of hydrodynamic equations for
mixtures, which will be discussed elsewhere.
It might appear that the extension from one to two com- ||. KINETIC THEORY AND HOMOGENEOUS COOLING
ponents is simply a matter of increased complexity and ad- STATE
ditional parameters differentiating the two species. In fact,
there are qualitative differences due to the cooling effects of Consider a binary mixture of smooth hard spheres of
the inelastic collisions. In the context of a normal solution,massesm; and m, and diametersr; and o,. In general,
the distribution functions for the two species are defined sucleollisions among all pairs are inelastic and are characterized
that all time dependence occurs through the overall temperdy three independent constant coefficients of normal restitu-
ture of the mixture. Nevertheless, due to the inelasticitytion a;;, @y, and ai,=ay;, whereq;; is the restitution
coefficient for collisions between particles of spediesdj.
For spatially homogeneous isotropic states, the set of nonlin-

*Permanent address: Departamento @écB) Universidad de Ex- ear Enskog kinetic equations determines the velocity distri-

tremadura, 06071 Badajoz, Spain. bution functionsf;(v;t) for i=1,2,
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fi(vait) =2 Jylvalfiv.f0], (1)
whereJ;;[v,|f;,f;] is given by

Jij[Vllfivfj]EXijU'izjf def do O (0 g10)(0- g0
X[ 2fi (v vy — Fi(v)Fj(vo)]. (2)

Here;; is the pair distribution function for particles of types
i andj when they are in contact, i.e., separatedoy= (o

+0j)/2. Also, o is a unit vector directed along the line of
centers from the sphere of speciet that of specieg at
contact,® is the Heaviside step functiog;,=v,;—V,, and
the precollisional velocities; andv; are given by

vi=vi—u;i(1+a; (o g0,
Vo=Vot ij(1+ ey ) (0G0, 3

where wj;=m;/(m;+m;). The collision operators conserve
particle number for each species and the total momentum

f dVlJij[V1|fi,fj]:O, 2 fdvlmivl\]ij[vﬂfi,fj]:O.
1]
4

where vy = (2kgT;/m;)¥? is the thermal velocity for par-
ticles of species. The first term on the right side with=j
represents the rate of energy loss from collisions by particles
of the same species. It vanishes for falin the elastic limit

but is nonzero for inelastic collisions. The second is nonzero
in general, as it describes the transfer of energy between the
different species which occurs for both elastic and inelastic
collisions. However, in the special state of a Maxwellian
distribution for each speciett the same temperatutbis last

term also vanishes in the elastic limit. This is due to detailed
balance whereby the energy transfer between species is pre-
cisely balanced by energy conservation for this state.

The analog of the special detailed balance state for inelas-
tic collisions is the homogeneous cooling state. Due to the
energy loss on collisions, thg and { never vanish and the
temperatures are always time dependent. In the same way as
the single gas case, it is assumed that there is a special HCS
normal solution for which all of the time dependence of
fi(vy;t) is through the total temperaturg(t). It follows
from dimensional analysis thét(v,;t) has the form

fi(ve;t) =nivg (D) ®i(vy /vo(l)), (10

where vS(t)=2kBT(t)(ml+ m,)/(my;m,) is a thermal ve-
locity defined in terms of the temperatufét) of the mix-
ture. It follows directly from this assumption and the defini-
tion of the partial temperature in Ed5) that all three
temperatures are proportional to each other and their ratios

However, the total energy is not conserved. It is convenienf'® all constant. One possibility is that all three temperatures
to discuss energy transfer in terms of the partial temperaturéd© €gual, as in the case of elastic collisions. However, this

T;, defined by

3 1,
EnikBTiZJ dvlzmivlfi, (5)

wherekg is the Boltzmann constant and

nizf dv,f; (6)

is the number density of speciésThe temperature of the
mixture is defined as

2 1
T= 3nkB 2 f dVlzmiVifi:Ei XiTi, (7)

X;=n;/n being the concentration of speciésand n=n;
+n, is the total number density. Also, the “cooling rates”
(fractional energy changes per unit tijfer these tempera-
tures are defined by

G=-anTi, (=-dInT, (=T'X xT, @

where the last equality follows from the second equality of
Eq. (7). The cooling rates are due to collisions, as follows

from the Enskog equation:

2

3nvj

gi=— EJ: fdvlviJij[Vllfivfj]r 9

cannot be assumeapriori and the proportionality constants
must be determined from the solution to the kinetic equation.
It is found below that the temperatures are in fact different. It
is sufficient to determine the constant temperature ratio for
the two different species=T,/T, as all three temperatures
are obtained from it via Eq7),

Ty(t)
y= —Ti(t) = const, (11)
leading to
Ti(H)= WT(U' Ty(t)= mT(t)-
(12)

An important further consequence of Edl) is the equality
of the cooling rates defined by E(B),

L1(t)= (1) =£(1). (13

The problem is therefore to solve the Enskog equation for a
distribution function of the form(10) subject to the self-
consistency constrairit; (t) = ,(t).

In terms of the reduced velocity} ,= Vv »/vg, the dimen-
sionless Enskog equations with E40O) then become

1
FE Vi (Ve)=2 Flvile, 0] (19

with Vx=d/avi , &= I(na?y,) and
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V2 T;(t)/T(t) is a constant, and it has the advantage that the
Jﬁ[v’ﬂcpi aq)j]E—zJij[Vl|fi ] leading polynomial in the expansion is of degree 4. In the
Ninoy, dimensionless variables of Sec. Il the approximate form for
o |2 the solution is
=XJXij(J) de§Jd0®(0'gfz)(U'g’fz)
012 Ci

15
AiZV;_C4—5)\iV1r2+ Z }

|32 ,
_ , ) di(vy =<—') e VI
X[ a2V} ), (v5*) W=7

—0;(v)P;(v3)]. (15) =dO(vi)+c @M (vY), (18)

1+

must be determined from the En-
skog equation. These coefficients measure the deviation of
2 @, from the chosen reference Maxwellian.

P, ,(bj]:—gxiz de’fVIZJﬁ[Vﬂq’i D], It is useful at this point to see the implications of the

I requirement of equal cooling rates, HG3) or Eq. (17), by

(16) estimating®; as<bi(°). This estimate is suggested by the fact

that it is correct in the elastic limit and is known to be a very
good approximation for inelastic collisions in the one-
component case. The integrals of Efj7) are readily evalu-
ated with this approximation, and the details are described in
Appendix A. The results provide an explicit expression for
¥, which simplifies in the weak dissipation limit (la;;

Similarly, in dimensionless variables the cooling rates argyhere the coefficients:
given by '

Where)\i=(v0/v0i)2=T/(Ti,u,,-i). The use of¢ instead of
£* in Eq. (14) is permitted by Eq(13). This choice is con-
venient since then the moments(@#) with respect to 1y,
and v? are automatically verified without further specifica-
tion of ®;. Next, noting thaty= (oM 2)/ (21N 1), the con-
straint(13) determines the temperature ratio

<1) to
> olv*1 vE2IE[VE D, D]
Tl(t) i 1 21”’12 1 vYijLVva 1 ¥ Tl(t)
y= - ' T (t)—>l+2— (X1~ p21X2) (1= agp)
To(t) 1 ) 2 Ha2kto1
; jdvf E,U~21V’1k JEJ[V’I|¢2,¢J'] ,
l (%)
(17) +X 2 (0_12) XoX 22\ 11— ap)
12
Once®,; and®, have been determined from Eq44), the
integrals on the right side of Eq1l7) can be performed to o112
determine the temperatures. “\op XiX1Vian(l—ag) | (. (19

In summary, the HCS, solution is defined by the two
equations(14) and the condition that the temperature ratio,
Eq. (17), is time independent. These three equations must b
solved self-consistently for the two distribution functichs
and the temperature rattg. An approximate solution is de-
scribed in the next section.

gere, uj; andx; are the reduced mass and concentration,
respectively, for specids This shows that the assumption of
different temperatures for each species is in fact necessary,
except for mechanically equivalent particles or elastic colli-
sions. The three terms on the right side proportional to (1
—ajj) represent three different types of inelastic collisions
providing independent mechanisms to enforce this tempera-
To solve the equations for the HCS, the distribution func-ture difference. A particularly simple example is the tracer
tions first are expanded in a complete set of polynomialdimit for a single particle in a surrounding batfe., x;
{P4} with a Gaussian measure. The coefficieggsof suich ~ —0, X,—1), in which case Eq(19 becomes
an expansion are polynomial moments of the distribution

Ill. APPROXIMATE SOLUTION

functions. In practice, Sonine polynomials are used. ThiSTl(t) Xa2 09\ 2
representation is then substituted into E}) and the equa- oL 2—(1—a12)+ —(—) (1—ay).
tion is multiplied byP(v;) and integrated ovev,, giving 2(1) M1z 2pa1N2pyp\ 012

an infinite hierarchy of equations for the coefficiers. (20)
Approximate solutions are obtained by selecting a finite sub-

set of terms in the expansion. This approach is similar to thdhis agrees with the weak dissipation limit of the exact re-
usual moment method for solving kinetic equations in thesults derived in the tracer particle proble] and in the
elastic case. It has been applied as well for inelastic colliFokker-Planck descriptiof6].

sions in the one-component case where an excellent approxi- Returning to the solution18), the coefficients; are de-
mation is obtained by retaining only the first two terfdg.  termined by substitution of Eq18) into the Enskog equa-
A similar approximation is assumed here. The parameters dfon, multiplying that equation by’l“‘, and integrating over
the Gaussian prefactor are chosen such that it is normalizdtie velocity. From experience with the one-component case,
to unity and provides the exact second mom@t In this it is expected that the; are very small so that only linear
case it becomes a Maxwellian distribution at the temperaturéerms inc; are retained. The coupled set of equations is
T;. This is consistent with the normal forrfl4) since found to be
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1
1+ —ci) =AO+APe+AVe; (2D

2>\2§' ( 2

with the definitions

AO=> f dviviiativi|e®, (0], (22)
J

A= [ avivivi|of @01+ v el o]

+J5 vy oM, <1><°>]} (23

Ap= [ avivisasivie@. e e

Similarly, the cooling rates can be evaluated from @) as
&

with the definitions

= O+ 5 Dei+ Ve, (25

i*<°>=—x21dv1vl Svie@,0, (26

s0=2n [ avivizativi o o)

+ 5[V [@@ M1+ I v M D07},

(27)
é’*(l) f dV V* 2J* [V |q>(0) q)(l)] (28

The condition for equal cooling rates is
2O+ Yy + Y0,= 5 O+ 3, + éW;l(l)cl'(zs»

The problem now has been reduced to quadratures. All int
grals of Eqs(22)—(24) and (26)—(28) can be performed ex-
actly as explicit functions ofy. The coupled set of linear
equations(21) is first solved forc, andc,. Next, these are
substituted into Eq(29) to get a nonlinear function deter-

mining . This provides entirely all parameters of the distri- .

bution functionsd; and the temperaturdg . The analysis is
complex and is summarized in the Appendixes.
Before studying the general dependenceciond y on
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FIG. 1. Plot of the coefficients; versus the restitution coeffi-
cienta=a 1= ay,=apforn* =0, o11= 0= 013, X1 /X,=1, and
m,/m,=2. The solid line refers ta; while the dashed line corre-
sponds toc,. The dotted line is the common value in the single
component case.

Also, in the tracer limit k;<<x,) with a,,=1, the solution is
¢c,=0 and

_ 1+C¥12
I 2+ (1= a1 (pan/ 1)

(31)

which agrees with the results derived in R&]. Finally, in
the Fokker-Planck limit X;<<x, and my,<<m,), the results
obtained in Ref[6] follow from the present results. All this
shows the self-consistency of the present description.

A full presentation of the results is difficult as there are
many charactenstlc parametersy;j, mi/my, X;/Xy,
o1/ 095, @andn* —ncrl2 For the sake of concreteness, con-
sider the casev,;= a»,= @1,=a. The velocity dependence
of the distribution functions is given explicitly by E418)
but is parametrized by, ¢,, andy. The primary feature of
¢y, andc, is that they remain small for all relevant values of
«a, as illustrated in Fig. 1 for the typical case,/m,=2,

K1/X=1, o13= 0, and n*=0. Also shown is the corre-

sponding result for a one-component systénechanically
equivalent particles The small values of these coefficients
support the assumption of a low-order truncation in the poly-
nomial expansion of the distribution function. Further details
of ¢, andc, will not be considered here. Instead, it is of
interest to see the dependence of the temperature yatio
dissipationa. Figure 2 shows the dependenceyobn « for
X1/X,=2, 011= 05y, andn* =0 for several values of the

mass ratio. For large differences in the mass ratio the tem-
perature differences are significant, even for moderate dissi-
pation(say a~0.9). The temperature of the excess particles
és larger(smalley than that of the defect particles when the
excess species is heavidighter) than the defect species.
The influence of the concentration ratio on the temperature
ratio is not as strong as that observed with the mass ratio, as
is shown in Fig. 3, but is still quite important. Finally, in Fig.

4, y(a,n*)/y(«,0) is plotted as a function of the reduced
densityn* for m;/m,=2, x;/x,=0.5, 01,=205,, and for
a=0.8 and 0.6. For a given value of the density, the relative
temperature ratio decreases as the degree of inelasticity in-

the parameters of the problem, it is instructive to conside
some special limit cases. In the elastic limif;= as= a1,
=1, the general results lead to=1 andc;=c,=0 corre-

homogeneous equilibrium stdte0]. In the case of mechani-
cally equivalent particlesn;=m,,@11= as= a@,.=a,014
=04, the results of the single gas are recovefdd
namely,y=1 and

32A1—a)(1-2a?)
81— 17a+30a%(1—a)

C1=

=

(30
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FIG. 2. Plot of the temperature ratip=T, /T, versus the res-
titution coefficienta= a11= ayo=aq, for N* =0, o11= 0= 012,
X1 /x,=2, and three different values of the mass ratio;/m,
=0.1(solid line), m; /m,= 2 (dashed ling andm; /m,= 10 (dotted

line).
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FIG. 4. Plot of the reduced temperature rajitx,n*)/ y(«,0)
as a function of the reduced density for o,=20,,, m;/m,
=2, X1/x,=0.5, and for two different values of the restitution
coefficient:«=0.8 (solid line) and o= 0.6 (dashed ling

creases. In this last figure the extended Carnahan-Starlingetermined by the temperature of the mixtdr&), as re-

approximation fory;; as a function oh* has been usdd 1],

1 3 ¢ &

i Tjj

1
NiT1=0 "2 (102 oy 2(1-1)°

where&=(mn/6)2x;o7 , andv=(mn/6)2;x;o is the vol-

ume packing fraction.

IV. DISCUSSION

The homogenous cooling stateCS) for a binary mixture

2
(Uii"ij

(32

quired for a normal solution. A consequence of this scaling
form is that all temperatures are proportional to each other
with the same cooling rate. This does not imply that the
temperatures themselves are the same, and indeed the analy-
sis shows they are different. The present work extends pre-
vious analyses made in the limits of tracer dynanffgsand
Brownian motion[6].

The detailed mechanisms responsible for the resulting
temperature differences are complex in general. However,
some qualitative understanding can be obtained from the ex-
plicit weak dissipation expressigi9). The cross-collisional
contribution, proportional to * «4,, tends to increase the

has been defined in Sec. Il and evaluated to good approxjemperature of the species with the greater mass density rela-
mation in Sec. Il for a general degree of dissipation, com-V€é tO that for the lower mass density. The self-collisional
position, mass ratio, particle diameter, and a wide range gfontributions tend to yield a higher temperature for the spe-
density(i.e., an expected accuracy comparable to that of th&'€S with the weaker dissipation, larger particle size, larger

RET for elastic collisions The distribution functions for

concentration, and/or smaller mass. The number of variable

each species have a scaling form with the time dependend®@rameters is large so thatpriori prediction of the domi-

2.5 d T d T d T

2.0 P

.....

FIG. 3. Plot of the temperature ratip=T, /T, versus the res-
titution coefficienta= a11= ay,=aq, for N* =0, o11= 0= 012,
m,/m,=4, and three different values of the concentration ratio:
X1/%,=0.25 (solid line), x;/x,=1 (dashed ling and x;/x,=4

(dotted ling.

nant mechanism controlling the temperature ratio is simple
only in specific limiting cases.

The distribution function for each species is close to a
Maxwellian at the temperature for that species. The correc-
tions calculated within a first-order Sonine polynomial ex-
pansion are small and qualitatively similar to the small cor-
rections found in the one-component case. However, the
reference Maxwellians for the two species can be quite dif-
ferent due to the temperature differences. This leads to inter-
esting new consequences for hydrodynamics. The Chapman-
Enskog method for states with small spatial gradients is
based on an expansion about teeal HCS [2,3]. This is
obtained from the HCS by replacing the temperature, densi-
ties, and flow velocity by their actual nonequilibrium values,

e.g.,

fi (1) =i(r, O v 3(T(r, 1) (Vy Ivo(T(r,1))),
(33

where V,=v,;—U(r,t), U being the flow velocity of the
mixture. The interesting new feature is an additional density
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dependence due to the fact that the temperature ratio depenititsn (18). In this appendix and the following one, it is under-
on the densitiesor concentrations i.e., for instance, stood that the dimensionless quantities of Sec. Il are used,
T and the asterisk is deleted to simplify the notation. Moments
_y Tt - - of the collision integrals are evaluated using the identit
MO =pai's g = sadlXar 0+ 0% D) d g Y

34 f dvyviJ[va| @i, ]
where the space and time dependence(oft) is through its

dependence on the hydrodynamic varialplee Eq(19) as a

special example In the Chapman-Enskog expansion, spatial JXII( ) fdvldvzj do®(0-g1)
gradients off; (r,v,;t) occur so that completely new den-

sity gradient effects are generated by the dependence on X(0- 91 Di(v1) i (vo)[V) = VST, (A1)

\i(r,t). The details of this have not been investigated yet but

it is expected to lead to interesting additional contributions towith

the transport coefficients. A study of these effects on mutual - -

diffusion is in progress. Vi=Vi— uji(1+ ajj)(0o- g 0. (A2)

It is appropriate to comment at this point on the relation- Use of Egs.(A1) and (A2) in Eq. (16) allows the angular

ship of this work to previous studies of granular mixtures..
There is no other study devoted to the homogeneous coolin tegrals to be performed. The calculation is straightforward
Ht lengthy and only the result is given,

state of which we are aware. There are related attempts
deriving hydrodynamic equations that implicitly assume a 1 o |2
reference HC$7,9]. In these cases the analysis was limited §i=(1—a|,)12777\ ( ) xi)(iif dv,dv, gfﬂ)i(vl)(bi(vz)
to asymptotically weak dissipation and the assumption of a 712
local Maxwellian reference state. In addition, it is assumed 1
that the reference states for both species are at the same +(1— a|1)377)\i,uvﬁxj)(ijf dv,dv, g3,0i(v) D;(vy)
global temperature. The analysis here applies for an arbitrary
degree of dissipation and shows that the assumption of a 2
common reference temperature is not justified even at weak ~+(1+ aij)§ TN i X X
dissipation. This suggests that the derivation of hydrody-
namic equations and transport coefficients for granular mix-
tures should be revisited to account for these qualitatively XJ dv1dvz 912 g1z Gij) Pi(v1) Pj(Va), (A3)
new features.

The predicted temperature difference has a specific dewhere it is understood that“i andG;;= w;;Vv,+ ujiV,. This
pendence on many parameters and is therefore susceptibleggpression for; is still exact.
precise testing by Monte Carlo simulation of the RET and by The leading COI’]tI‘IbutIOI@'(O) is obtained by the replace-
molecular-dynamics simulations. We are not aware of anynent®; —>q)|(0),
such studies of the HCS published to d@though simula- 2
tions of driven mixtures appear to be underway by some (I)(O)(v )= (N) e”\i"f
groups and hope that the present work will provide some 1 ’
motivation for both types of simulations. Such simulations
would also provide important information about the stability 10 get
of this state. This is important since it is known that the HCS o )2

D 2

(Ad)

for a one-component system is unstable to long- Wavelengtkl(o)—(l a?
perturbations. Until the hydrodynamics for the binary mix-

ture, described above, has been worked out, it will not be .
possible to say theoretically whether the mixture will be X f dv,dv, gi,e”(Vitva)

more or less stable and whether there are new mechanisms

active (e.g., segregationThese interesting questions should N

. 2 1 -2 2 —-1/2"771
be answered in the near future. +(1—aij)§7r MiiXiXij N ™
i
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APPENDIX A: COOLING RATES 1/ 1/2
. . . . X[()\j/)\i) 2\/1_V2]'[()\j/)\ MI]V1+/*L1IV2]
In this appendix the cooling raté3 given by Eq.(16) are ,
evaluated by using the first Sonine polynomial approxima- x e~ (vVitvy), (AB6)
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The first integral is performed by transforming to relative
and center-of-mass variables. The second two integrals can §

be performed by the change of variables

A\ 12
j
X:()\_i) Vi— Vo, (A7)
)\j —1/2
y= . Vi—Vs, (A8)
I

with the Jacoblar[()\ IN)Y2+ (N IN) Y23 The final re-
sult for £(©

0
&

2 011 2 _
ayzw(—) Xixahg A1 ady
J12

1/2
(1+ agph, M2

4 1+
+ §\/;X2X12M21(

X[2=po(1+ @) (1+ )], (A9)

where 7=\1/\y= 15/ (121y). The result for7” is ob-
tained from Eq.(A9) by interchanging 1 and 2, ang
—n~ L. The estimate ofy given by Eq.(19) is obtained by
equating £{”= ¢ and evaluatingy to first order in (1

alj)
The expression for the coefficient of, g“) is given by
Eqg. (27). This is identified from Eq(A3) as

1 o \?
(P=(1-df 7 (U—Illz) X Xii

% [ dvidv g @O evy)

+ DD (v)DO(v,) ]+ (1o
1
X§7T)\i/~"j2i X Xij f dvidv, 93,0 M(v) DO (vy)

2
+ (14 aij) 3 mhimgiXxij

X f dv1dV, 91 G1o Gij) DV (v ) DO (v).

(A10)

These are Gaussian integrals of polynomials similar to those

VICENTE GARZO AND JAMES DUFTY
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1+ 7] —3/2 _
\/_X2X12,U~21( (1+apph, 2
X[2+3pa1(1+ a1 (1+7)]. (A12)

The expressions fafsy andZ$Y can be easily obtained from
Egs.(Al1l) and(A12).

APPENDIX B: COLLISION INTEGRALS

The collision integral$22)—(24) are evaluated in this ap-
pendix. Consider first the general expression

Ai:; J de_Vi\]ij[Vll(I)i ,(I)J]

-3 xjxu(ﬁ) [ avav, [ dio 50,0
] 012
(0 g1 Pi(v)Pj(vo)[ Vi~ vi],
where the identity(Al) has been used. Substitution of Eq.

(A2) into Eq. (B1) allows the angular integral to be per-
formed with the result

(B1)

Aj= 2 Xj Xij

) Jdvldeq) (V) Pj(V2)Fij(912,Gjj),
(B2

) e T a2yl 2\ .5 )
Fij(912.Gjj) = 3(1 ai)) 1 (2+ ) 91+ m(1+ )

2
X| 315 (205~ 1)g3,G]
—2Mji912(3i21(912'Gij)+:“1‘2i(“ij -3)

2
X Q1A 12 Gij)z_ §,U~j3i(4_3aij "‘201%)

X121 Gij)z}- (B3)

The collision integral$22)—(24) can now be identified as

(0) 7ij |*
Ai = E X]le f dVldVZ
i 012

of Eqg. (A5) and can be performed in the same way. The

result for (Y is

1 T 011 2 _
5(1)_—\/;<_> X1X11M g 1/2(1_a§1)
012

(1+79)~%

1 ,
+1_2\/;X2X12M21 (1+ @)\, 12

X[2(3+47n) =3uxn(l+ap)(1+7)]. (ALl

In the same way{}) is given by

XOO(v) @O (vo)Fij(912,Gij),  (BY)
(1 Uii 2 (0) (1)
AP=xix| o] | dvadval 2{0(v) @ {P(v)
+DD(v ) PV(v,) IFii(912,Gip), (BS)
Ai(jl):Xinjf Vi dv,® (O (V) DV (Vo) Fij (012,Gij).
(B6)

These are Gaussian integrals that can be calculated by the
same method as described in Appendix A. The integrations
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can be done quite efficiently by using a computer package of X (1+ 7)(70+ 1179+ 445°) — 24u5,(1+ ayy)?
symbolic calculation. Here, we have use@THEMATICA

[12]. The results are ) 3 3 3
X(1+9)“(5+47)+30us(1+a1)*(1+79)°],

2 2
_ 011 9+2all
AP=—\2m\] 5/2[ X1X11( ) > (1-aiy (B8)

012

—2Xox1 1+ 1) Y2 00(1+ a1 ) [ —2(6+57)
+ por(14 @) (1+ 7)(14+59) —8udy(1+ a10)?

V .
AR =g Xox1h 1 *2nP(1+ 1)~ Ppup(1+ a1)[2(2+57)
X (1+7)+2p5)(1+ @) *(1+ 77)3]] , (B7)
+3uai(1+ 1) (1+ 7)(2+57) — 24usy(1+ 1)
o112 3 2 3 3 3
AD— T Xlel(a'_ii) Lt ayyt (694103 X (14 7)%+ 30,1+ a10)3(1+ 7)3]. (BY)
1 2 \/E 1 —5/2 1 . . 1 1
X(1=ap)| = ggXexad 1+ 7)) pa(l+ a1y The corresponding expressions fof”), A$Y, andA S can

) . be easily inferred from EqgB7)—(B9) by interchanging 1
X[=2(90+231n+ 18457°+407°) + 3ua(1+ @) and 2 and settingy— 7 1.
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